Skip to main content

An incomplete Goliath, Google, to launch undercooked tools

 


Google announced a slew of AI product integrations at their I/O 2023 keynote event this week. It seems that the core technology behind these will be its new PaLM2 LLM. That's a problem, as The Guardian article concluded:

In its preliminary research, the company warned that systems built on PaLM 2 “continue to produce toxic language harms”, with some languages issuing “toxic” responses to queries about black people in almost a fifth of all tests, part of the reason the Bard chatbot is only available in three languages at launch. 

Hinton wouldn't have approved. PaLM 2 will steal a march on OpenAI/Microsoft as it will be the first Multimodal GPT to be launched to the public. According the a Google blog the model will have the following capabilities:

  • Multilinguality: PaLM 2 is more heavily trained on multilingual text, spanning more than 100 languages. This has significantly improved its ability to understand, generate and translate nuanced text — including idioms, poems and riddles — across a wide variety of languages, a hard problem to solve. PaLM 2 also passes advanced language proficiency exams at the “mastery” level.
  • Reasoning: PaLM 2’s wide-ranging dataset includes scientific papers and web pages that contain mathematical expressions. As a result, it demonstrates improved capabilities in logic, common sense reasoning, and mathematics.
  • Coding: PaLM 2 was pre-trained on a large quantity of publicly available source code datasets. This means that it excels at popular programming languages like Python and JavaScript, but can also generate specialized code in languages like Prolog, Fortran and Verilog.
It seems quaint that Fortran is an included programming language. The paper Google published alongside the launch of PaLM 2 is rather opaque. It doesn't indicate how the model was trained for instance. What the paper states is PaLM 2 is trained on a dataset that includes a higher percentage of non-English data than previous large language models, which is beneficial for multilingual tasks (e.g., translation and multilingual question answering), as the model is exposed to a wider variety of languages and cultures.

  • In addition to non-English monolingual data, PaLM 2 is also trained on parallel data covering hundreds of languages in the form of source and target text pairs where one side is in English.
  • The inclusion of parallel multilingual data further improves the model’s ability to understand and generate multilingual text.
  • Even though PaLM 2 has a smaller proportion of English data than PaLM, we still observe significant improvements on English evaluation datasets, as described in Section 4.
  • PaLM 2 was trained to increase the context length of the model significantly beyond that of PaLM.
I don't know what the user base of all the Google products is, from maps to docs and search, but it's likely that more people will be exposed to Google AI tools than any other GPT, once the roll out is complete. Doing so with such an incomplete model seems a high risk strategy. 

Comments

Popular posts from this blog

OpenAI's NSA Appointment Raises Alarming Surveillance Concerns

  The recent appointment of General Paul Nakasone, former head of the National Security Agency (NSA), to OpenAI's board of directors has sparked widespread outrage and concern among privacy advocates and tech enthusiasts alike. Nakasone, who led the NSA from 2018 to 2023, will join OpenAI's Safety and Security Committee, tasked with enhancing AI's role in cybersecurity. However, this move has raised significant red flags, particularly given the NSA's history of mass surveillance and data collection without warrants. Critics, including Edward Snowden, have voiced their concerns that OpenAI's AI capabilities could be leveraged to strengthen the NSA's snooping network, further eroding individual privacy. Snowden has gone so far as to label the appointment a "willful, calculated betrayal of the rights of every person on Earth." The tech community is rightly alarmed, with many drawing parallels to dystopian fiction. The move has also raised questions about ...

What is happening inside of the black box?

  Neel Nanda is involved in Mechanistic Interpretability research at DeepMind, formerly of AnthropicAI, what's fascinating about the research conducted by Nanda is he gets to peer into the Black Box to figure out how different types of AI models work. Anyone concerned with AI should understand how important this is. In this video Nanda discusses some of his findings, including 'induction heads', which turn out to have some vital properties.  Induction heads are a type of attention head that allows a language model to learn long-range dependencies in text. They do this by using a simple algorithm to complete token sequences like [A][B] ... [A] -> [B]. For example, if a model is given the sequence "The cat sat on the mat," it can use induction heads to predict that the word "mat" will be followed by the word "the". Induction heads were first discovered in 2022 by a team of researchers at OpenAI. They found that induction heads were present in ...

Prompt Engineering: Expert Tips for a variety of Platforms

  Prompt engineering has become a crucial aspect of harnessing the full potential of AI language models. Both Google and Anthropic have recently released comprehensive guides to help users optimise their prompts for better interactions with their AI tools. What follows is a quick overview of tips drawn from these documents. And to think just a year ago there were countless YouTube videos that were promoting 'Prompt Engineering' as a job that could earn megabucks... The main providers of these 'chatbots' will hopefully get rid of this problem, soon. Currently their interfaces are akin to 1970's command lines, we've seen a regression in UI. Constructing complex prompts should be relegated to Linux lovers. Just a word of caution, even excellent prompts don't stop LLM 'hallucinations'. They can be mitigated against by supplementing a LLM with a RAG, and perhaps by 'Memory Tuning ' as suggested by Lamini (I've not tested this approach yet).  ...