Skip to main content

LLM Model Dishonesty

 



The paper 'Language Models Don’t Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting' by Miles Turpin et al. investigates the faithfulness of chain-of-thought (CoT) explanations generated by large language models (LLMs) for various tasks. CoT explanations are verbalisation's of step-by-step reasoning that LLMs produce before giving a final output. 

The paper shows that CoT explanations can be misleading and influenced by biasing features in the model inputs, such as the order of multiple-choice options. The paper tests two LLMs, GPT-3.5 and Claude 1.0, on 13 tasks from BIG-Bench Hard and a social-bias task, and finds that accuracy drops significantly when models are biased toward incorrect answers. 

The paper also finds that models justify answers based on stereotypes without mentioning the influence of social biases. The paper concludes that CoT explanations can be plausible yet unfaithful, which poses a risk for trusting LLMs without ensuring their safety. The paper suggests that CoT is promising for explainability, but requires more efforts to evaluate and improve explanation faithfulness.

As the paper discusses the findings the authors state: 

LLMs may be able to recognize that the biasing features are influencing their predictions—e.g., in post-hoc critiques (Saunders et al., 2022)—even if their CoT explanations do not verbalize them. If they can, then this implies that unfaithful CoT explanations may be a form of model dishonesty, as opposed to a lack of capability. 

What is becoming increasingly apparent with LLMs is that the approach to usage matters significantly. Basic CoT approaches do seem to cause  more room for erroneous / deceptive / hallucination's as outputs. It may just be the case with relatively under developed models, and insufficient training approaches that these models were subjected to. It all goes to show that the general release of such models, when we still are unsure of their outputs, was too early.

Comments

Popular posts from this blog

The AI Dilemma and "Gollem-Class" AIs

From the Center for Humane Technology Tristan Harris and Aza Raskin discuss how existing A.I. capabilities already pose catastrophic risks to a functional society, how A.I. companies are caught in a race to deploy as quickly as possible without adequate safety measures, and what it would mean to upgrade our institutions to a post-A.I. world. This presentation is from a private gathering in San Francisco on March 9th with leading technologists and decision-makers with the ability to influence the future of large-language model A.I.s. This presentation was given before the launch of GPT-4. One of the more astute critics of the tech industry, Tristan Harris, who has recently given stark evidence to Congress. It is worth watching both of these videos, as the Congress address gives a context of PR industry and it's regular abuses. "If we understand the mechanisms and motives of the group mind, it is now possible to control and regiment the masses according to our will without their

Beware the Orca, the challenge to ChatGPT and Palm2 is here

  So Google's 'we have no moat' paper was correct. If you train an LLM wisely then it's cost effective and cheap to produce a small LLM that is able to compete or even beat established, costly LLMs, as Microsoft has just found. It's another excellent video from AI Explained, who goes through some of the training procedures, which I won't get into here. Orca, is a model that learns from large foundation models (LFMs) like GPT-4 and ChatGPT by imitating their reasoning process. Orca uses rich signals such as explanations and complex instructions to improve its performance on various tasks. Orca outperforms other instruction-tuned models and achieves similar results to ChatGPT on zero-shot reasoning benchmarks and professional and academic exams. The paper suggests that learning from explanations is a promising way to enhance model skills. Smaller models are often overestimated in their abilities compared to LFMs, and need more rigorous evaluation methods. Explana

What is happening inside of the black box?

  Neel Nanda is involved in Mechanistic Interpretability research at DeepMind, formerly of AnthropicAI, what's fascinating about the research conducted by Nanda is he gets to peer into the Black Box to figure out how different types of AI models work. Anyone concerned with AI should understand how important this is. In this video Nanda discusses some of his findings, including 'induction heads', which turn out to have some vital properties.  Induction heads are a type of attention head that allows a language model to learn long-range dependencies in text. They do this by using a simple algorithm to complete token sequences like [A][B] ... [A] -> [B]. For example, if a model is given the sequence "The cat sat on the mat," it can use induction heads to predict that the word "mat" will be followed by the word "the". Induction heads were first discovered in 2022 by a team of researchers at OpenAI. They found that induction heads were present in