Skip to main content

A Network Analysis Tool to help identify structural gaps

 


InfraNodus is a web-based open source tool and method for generating insight from any text or discourse using text network analysis. The byline on the website states, 'Get an overview of any discourse, reveal the blind spots, enhance your perspective.' which, whilst accurate does little to summarise the potential of such a tool. Watching the introduction helps.

Its capabilities include representing any text as a network and identifying the most influential words in a discourse based on the terms' co-occurrence, providing text network visualization and analysis live as new data is added, offering discourse structure analysis to measure the level of bias in discourse and identify structural gaps in discourse, and being available via an API to be used in conjunction with other text mining and analysis software. The white paper, 'Generating Insight Using Text Network Analysis' concludes: 

'The tool is currently used by researchers, marketing professionals, students, lawyers, artists and activists worldwide (20000 users a year according to Google Analytics for the online version as of December 2018) and it became first available in its beta version in 2014. The range of its practical applications is quite diverse: text categorization, search engine optimization, measure of bias, sentiment analysis, computer-assisted research and creative writing'

It would seem that InfraNodus would be useful to examine a Tree of Thoughts style enquiry, which might be achievable via the API? Which ever type of enquiry is used, the ability to see the generated connections is a valuable insight. 

Other tools that I've come across for further analysis include ConceptMapAI. This tool provides users with a visual representation of their concepts, making it easy for them to understand complex relationships between different ideas. It would seem such tools complement the basic prompt interface well, and that a dashboard approach may soon be the user interface that gets the best usage out of such tools utilised together.

Comments

Popular posts from this blog

OpenAI's NSA Appointment Raises Alarming Surveillance Concerns

  The recent appointment of General Paul Nakasone, former head of the National Security Agency (NSA), to OpenAI's board of directors has sparked widespread outrage and concern among privacy advocates and tech enthusiasts alike. Nakasone, who led the NSA from 2018 to 2023, will join OpenAI's Safety and Security Committee, tasked with enhancing AI's role in cybersecurity. However, this move has raised significant red flags, particularly given the NSA's history of mass surveillance and data collection without warrants. Critics, including Edward Snowden, have voiced their concerns that OpenAI's AI capabilities could be leveraged to strengthen the NSA's snooping network, further eroding individual privacy. Snowden has gone so far as to label the appointment a "willful, calculated betrayal of the rights of every person on Earth." The tech community is rightly alarmed, with many drawing parallels to dystopian fiction. The move has also raised questions about ...

What is happening inside of the black box?

  Neel Nanda is involved in Mechanistic Interpretability research at DeepMind, formerly of AnthropicAI, what's fascinating about the research conducted by Nanda is he gets to peer into the Black Box to figure out how different types of AI models work. Anyone concerned with AI should understand how important this is. In this video Nanda discusses some of his findings, including 'induction heads', which turn out to have some vital properties.  Induction heads are a type of attention head that allows a language model to learn long-range dependencies in text. They do this by using a simple algorithm to complete token sequences like [A][B] ... [A] -> [B]. For example, if a model is given the sequence "The cat sat on the mat," it can use induction heads to predict that the word "mat" will be followed by the word "the". Induction heads were first discovered in 2022 by a team of researchers at OpenAI. They found that induction heads were present in ...

Prompt Engineering: Expert Tips for a variety of Platforms

  Prompt engineering has become a crucial aspect of harnessing the full potential of AI language models. Both Google and Anthropic have recently released comprehensive guides to help users optimise their prompts for better interactions with their AI tools. What follows is a quick overview of tips drawn from these documents. And to think just a year ago there were countless YouTube videos that were promoting 'Prompt Engineering' as a job that could earn megabucks... The main providers of these 'chatbots' will hopefully get rid of this problem, soon. Currently their interfaces are akin to 1970's command lines, we've seen a regression in UI. Constructing complex prompts should be relegated to Linux lovers. Just a word of caution, even excellent prompts don't stop LLM 'hallucinations'. They can be mitigated against by supplementing a LLM with a RAG, and perhaps by 'Memory Tuning ' as suggested by Lamini (I've not tested this approach yet).  ...