Skip to main content

Bark, the Open Source Text To Speech AI

 


When you think of Text to Speech in AI terms, the first company you may think of is Eleven Labs as the quality of their product literally speaks for itself. If you are looking for an Open Source tool, then Bark, by Suno may be of interest.  

In Hacker News one of the founders of Suno said this of Bark: 'At Suno we work on audio foundation models, creating speech, music, sounds effects etc….

Text to speech was a natural playground for us to share with the community and get some feedback. Given that this model is a full GPT model, the text input is merely a guidance and the model can technically create any audio from scratch even without input text, aka hallucinations or audio continuation. 

When used as a TTS model, it’s very different from the awesome high quality TTS models already available. It produces a wider range of audio – that could be a high quality studio recording of an actor or the same text leading to two people shouting in an argument at a noisy bar.'

This tool is already available on Hugging Face (which I'm due to do a blog piece on - the ToDO list is growing) which increases the utility. 

The GitHub description states:

'Similar to Vall-E and some other amazing work in the field, Bark uses GPT-style models to generate audio from scratch. Different from Vall-E, the initial text prompt is embedded into high-level semantic tokens without the use of phonemes. It can therefore generalize to arbitrary instructions beyond speech that occur in the training data, such as music lyrics, sound effects or other non-speech sounds. A subsequent second model is used to convert the generated semantic tokens into audio codec tokens to generate the full waveform. To enable the community to use Bark via public code we used the fantastic EnCodec codec from Facebook to act as an audio representation.'

Comments

Popular posts from this blog

The Whispers in the Machine: Why Prompt Injection Remains a Persistent Threat to LLMs

 Large Language Models (LLMs) are rapidly transforming how we interact with technology, offering incredible potential for tasks ranging from content creation to complex analysis. However, as these powerful tools become more integrated into our lives, so too do the novel security challenges they present. Among these, prompt injection attacks stand out as a particularly persistent and evolving threat. These attacks, as one recent paper (Safety at Scale: A Comprehensive Survey of Large Model Safety https://arxiv.org/abs/2502.05206) highlights, involve subtly manipulating LLMs to deviate from their intended purpose, and the methods are becoming increasingly sophisticated. At its core, a prompt injection attack involves embedding a malicious instruction within an otherwise normal request, tricking the LLM into producing unintended – and potentially harmful – outputs. Think of it as slipping a secret, contradictory instruction into a seemingly harmless conversation. What makes prompt inj...

The Future of Work in the Age of AGI: Opportunities, Challenges, and Resistance

 In recent years, the rapid advancement of artificial intelligence (AI) has sparked intense debate about the future of work. As we edge closer to the development of artificial general intelligence (AGI), these discussions have taken on a new urgency. This post explores various perspectives on employment in a post-AGI world, including the views of those who may resist such changes. It follows on from others I've written on the impacts of these technologies. The Potential for Widespread Job Displacement Avital Balwit, an employee at Anthropic, argues in her article " My Last Five Years of Work " that AGI is likely to cause significant job displacement across various sectors, including knowledge-based professions. This aligns with research by Korinek (2024), which suggests that the transition to AGI could trigger a race between automation and capital accumulation, potentially leading to a collapse in wages for many workers. Emerging Opportunities and Challenges Despite the ...

Can We Build a Safe Superintelligence? Safe Superintelligence Inc. Raises Intriguing Questions

  Safe Superintelligence Inc . (SSI) has burst onto the scene with a bold mission: to create the world's first safe superintelligence (SSI). Their (Ilya Sutskever, Daniel Gross, Daniel Levy) ambition is undeniable, but before we all sign up to join their "cracked team," let's delve deeper into the potential issues with their approach. One of the most critical questions is defining "safe" superintelligence. What values would guide this powerful AI? How can we ensure it aligns with the complex and often contradictory desires of humanity?  After all, "safe" for one person might mean environmental protection, while another might prioritise economic growth, even if it harms the environment.  Finding universal values that a superintelligence could adhere to is a significant hurdle that SSI hasn't fully addressed. Another potential pitfall lies in SSI's desire to rapidly advance capabilities while prioritising safety.  Imagine a Formula One car wi...