Skip to main content

You want your LLM to read an entire novel? Well you can now

 


A few days ago I wrote about the leaked letter from Google 'Open-source models are faster, more customizable, more private, and pound-for-pound more capable. They are doing things with $100 and 13B params that we struggle with at $10M and 540B. And they are doing so in weeks, not months.'

Two days later and here is the proof of exactly that: 

MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Starting today, you can train, finetune, and deploy your own private MPT models, either starting from one of our checkpoints or training from scratch.'

As it turns out, the full text of The Great Gatsby weighs in at just under 68k tokens. So, naturally, we had StoryWriter read The Great Gatsby and generate an epilogue. .... StoryWriter took in The Great Gatsby in about 20 seconds (about 150k words-per-minute). Due to the long sequence length, its “typing” speed is slower than our other MPT-7B models, about 105 words-per-minute. 

This is somewhat of a game changer, a model that handle large amounts of text input, whole papers worth, that's been trained on 1T tokens, which has cost a small fraction of the amount that LLMs training has previously cost. I haven't got the hardware capable of running the model, but from the few accounts I've come across so far, it's a very capable model. 

Comments

Popular posts from this blog

The Whispers in the Machine: Why Prompt Injection Remains a Persistent Threat to LLMs

 Large Language Models (LLMs) are rapidly transforming how we interact with technology, offering incredible potential for tasks ranging from content creation to complex analysis. However, as these powerful tools become more integrated into our lives, so too do the novel security challenges they present. Among these, prompt injection attacks stand out as a particularly persistent and evolving threat. These attacks, as one recent paper (Safety at Scale: A Comprehensive Survey of Large Model Safety https://arxiv.org/abs/2502.05206) highlights, involve subtly manipulating LLMs to deviate from their intended purpose, and the methods are becoming increasingly sophisticated. At its core, a prompt injection attack involves embedding a malicious instruction within an otherwise normal request, tricking the LLM into producing unintended – and potentially harmful – outputs. Think of it as slipping a secret, contradictory instruction into a seemingly harmless conversation. What makes prompt inj...

Can We Build a Safe Superintelligence? Safe Superintelligence Inc. Raises Intriguing Questions

  Safe Superintelligence Inc . (SSI) has burst onto the scene with a bold mission: to create the world's first safe superintelligence (SSI). Their (Ilya Sutskever, Daniel Gross, Daniel Levy) ambition is undeniable, but before we all sign up to join their "cracked team," let's delve deeper into the potential issues with their approach. One of the most critical questions is defining "safe" superintelligence. What values would guide this powerful AI? How can we ensure it aligns with the complex and often contradictory desires of humanity?  After all, "safe" for one person might mean environmental protection, while another might prioritise economic growth, even if it harms the environment.  Finding universal values that a superintelligence could adhere to is a significant hurdle that SSI hasn't fully addressed. Another potential pitfall lies in SSI's desire to rapidly advance capabilities while prioritising safety.  Imagine a Formula One car wi...

The Hidden Environmental Cost of AI: Data Centres' Surging Energy and Water Consumption

 In recent years, artificial intelligence (AI) has become an integral part of our daily lives, powering everything from smart assistants to complex data analysis. However, as AI technologies continue to advance and proliferate, a concerning trend has emerged: the rapidly increasing energy and water consumption of data centres that support these systems. The Power Hunger of AI According to the International Energy Agency (IEA), global data centre electricity demand is projected to more than double between 2022 and 2026, largely due to the growth of AI. In 2022, data centres consumed approximately 460 terawatt-hours (TWh) globally, and this figure is expected to exceed 1,000 TWh by 2026. To put this into perspective, that's equivalent to the entire electricity consumption of Japan. The energy intensity of AI-related queries is particularly striking. While a typical Google search uses about 0.3 watt-hours (Wh), a query using ChatGPT requires around 2.9 Wh - nearly ten times more en...