Skip to main content

Deceptions: how the language used by tech deceives

 


In response to the quick article on this mornings Radio 4

Misnomers: The terms used to market the field of AI tend to be misnomers, in commonly understood terminology. Let’s start with Artificial Intelligence. The definition of ‘intelligence’ is “the ability to learn, understand and think in a logical way about things; the ability to do this well. “ AI neither understands nor thinks, instead it redefines AI in it’s own terms as:  the theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. In these redefined terms the term AI works, but what it certainly isn’t is intelligent in the true sense. Hence AI is a contested term.

Neural Networks: has a few competing definitions, along the lines of ‘a computer system which is designed to work in a similar way to the human brain and nervous system’.  What we are really defining is an artificial neural network, that maybe inspired by biological brains, but is nothing like one in its structure and operation. 

‘The original motive for the pioneers of AI was to replicate human brain function: nature’s most complex and smartest known creation. This is why the field of AI has derived most of its nomenclature from the form and functions of the human brain, including the term AI or artificial intelligence.

So, artificial neural networks have taken direct inspiration from human neural networks. Even though a large part of the human brain’s functions remain a mystery, we do know this much: biological neural pathways or networks allow the brain to process massive amounts of information in the most complex ways imaginable, and that’s precisely what scientists are trying to replicate via artificial neural networks.

If you think Intel’s latest Core™ i9 processor running at 3.7GHz is powerful, then consider the human brain’s neural network in contrast: 100 billion neurons, which is what the brain uses for the most ‘basic’ processing. There’s absolutely no comparison in that sense between the two! The neurons in the human brain perform their functions through a massive inter-connected network known as synapses. On average, our mind has 100 trillion synapses, so that’s around 1,000 per neuron. Every time we use our brain, chemical reactions and electrical currents run across these vast networks of neurons.’

By Thomas, How similar are Neural Networks to our Brains

I could go on right through the lexicon of terms the tech industry uses and dispute them, but hopefully you get the point. 

Anthropomorphising machines is a dangerous trait. It may be convenient to use the terms the tech industries hands on to us, but ultimately it will prove to be unhelpful and even outright deceptive. This matters as the more AI products and services are promoted to a wider user base, without the fundamentals of understanding being challenged, the more people will be deceived and give more credit to the 'intelligence' than is deserved. 

Comments

Popular posts from this blog

OpenAI's NSA Appointment Raises Alarming Surveillance Concerns

  The recent appointment of General Paul Nakasone, former head of the National Security Agency (NSA), to OpenAI's board of directors has sparked widespread outrage and concern among privacy advocates and tech enthusiasts alike. Nakasone, who led the NSA from 2018 to 2023, will join OpenAI's Safety and Security Committee, tasked with enhancing AI's role in cybersecurity. However, this move has raised significant red flags, particularly given the NSA's history of mass surveillance and data collection without warrants. Critics, including Edward Snowden, have voiced their concerns that OpenAI's AI capabilities could be leveraged to strengthen the NSA's snooping network, further eroding individual privacy. Snowden has gone so far as to label the appointment a "willful, calculated betrayal of the rights of every person on Earth." The tech community is rightly alarmed, with many drawing parallels to dystopian fiction. The move has also raised questions about ...

What is happening inside of the black box?

  Neel Nanda is involved in Mechanistic Interpretability research at DeepMind, formerly of AnthropicAI, what's fascinating about the research conducted by Nanda is he gets to peer into the Black Box to figure out how different types of AI models work. Anyone concerned with AI should understand how important this is. In this video Nanda discusses some of his findings, including 'induction heads', which turn out to have some vital properties.  Induction heads are a type of attention head that allows a language model to learn long-range dependencies in text. They do this by using a simple algorithm to complete token sequences like [A][B] ... [A] -> [B]. For example, if a model is given the sequence "The cat sat on the mat," it can use induction heads to predict that the word "mat" will be followed by the word "the". Induction heads were first discovered in 2022 by a team of researchers at OpenAI. They found that induction heads were present in ...

Prompt Engineering: Expert Tips for a variety of Platforms

  Prompt engineering has become a crucial aspect of harnessing the full potential of AI language models. Both Google and Anthropic have recently released comprehensive guides to help users optimise their prompts for better interactions with their AI tools. What follows is a quick overview of tips drawn from these documents. And to think just a year ago there were countless YouTube videos that were promoting 'Prompt Engineering' as a job that could earn megabucks... The main providers of these 'chatbots' will hopefully get rid of this problem, soon. Currently their interfaces are akin to 1970's command lines, we've seen a regression in UI. Constructing complex prompts should be relegated to Linux lovers. Just a word of caution, even excellent prompts don't stop LLM 'hallucinations'. They can be mitigated against by supplementing a LLM with a RAG, and perhaps by 'Memory Tuning ' as suggested by Lamini (I've not tested this approach yet).  ...